

PROBE qPCR Master Mix Código: 13-10506-01 – 100 reações

Instruções de Uso

1. Descrição

A *PROBE qPCR Master Mix* é um kit desenvolvido para ensaios de PCR quantitativos (qPCR) utilizando sondas fluorogênicas que incorporam as sondas TaqMan e que contêm a enzima *HotStart Taq DNA polymerase*.

A Hot Start Taq DNA polymerase é uma Taq polimerase recombinante complexada com um anticorpo monoclonal anti-Taq que bloqueia a atividade da enzima à temperatura ambiente proporcionando um "início a quente" automático nas reações de qPCR com o objetivo de aumentar a sensibilidade e a especificidade deste ensaio de detecção.

Este kit foi otimizado para aplicações de PCR em tempo real que exigem alta sensibilidade e especificidade na detecção de alvos de DNA com sondas fluorogênicas incluindo a detecção e quantificação de agentes patogênicos, organismos geneticamente modificados e análise de expressão gênica.

A sonda qPCR Master Mix é compatível com os instrumentos de PCR em tempo real, incluindo os que que não requerem o corante de referência ROX, a saber; Roche LightCycler 480, Qiagen Rotor-Gene Q /3000/6000, Eppendorf Mastercycler ep / realplex realplex 2 s, Illumina Eco qPCR, Bio- Rad CFX96 / CFX384, BioRad iCycler iQ / Meu iQ / IQ5 e Thermo Scientific PikoReal real-Time PCR, Applied Biosystems 7500/7500 Rápido / VIIa 7 / QuantStudio 12K Flex e Stratagene Mx3000P / Mx3005P / MX4000 e Bioer.

2. Lista de Componentes

Cada kit contém reagentes suficientes para realizar 100 reações com volume final de 25 µL

Volume	13-10506-01	100 reações
1.25 mL	2X PROBE qPCR Master Mix	1 tubo
1000 μL	Água ultra-pura PCR	1 tubo

3. Modo de Uso

Este protocolo é para um volume final de reação de 25μL. No entanto, o volume da reação poderá ser ajustado conforme desejado.

Para reação múltipla, preparar uma mistura principal dos componentes comuns a todas as reações para diminuir os erros de pipetagem

1. Descongelar os componentes à temperatura ambiente. Quando descongeladas, ressuspender o 2X PROBE qPCR Master Mix, *primers* e sonda com auxílio do vôrtex e, em seguida, brevemente centrifugar para recolher a solução no fundo do tubo.

A fim de maximizar a especificidade, manter todos os componentes, as misturas de reação e as amostras em gelo.

2. Preparar a seguinte mistura de reação para cada amostra:

Componentes	Volume	Conc. Final	
2X PROBE qPCR Master Mix or Master Mix LOW ROX	12.5 μL	1X	
Primer Forward (20 μM)	0.5 μL	0.4 μΜ (0.2 – 0.8 μΜ)	
Primer Reverse (20 μM)	0.5 μL	0.4 μΜ (0.2 – 0.8 μΜ)	
Probe (10 μM)	0.5 μL	0.2 μΜ	
DNA Template	<u><</u> 10.5 μL		
Nuclease-free water	to 25 μL		

3. Condições de amplificação sugeridas pra qPCR

Protocolo step cycling

Stage	Step	Temp	Time
Hold	Desnaturação Inicial	95°C	2 min
40 cycles	Desnaturação	95°C	15 seg
	Anelamento e Extensão	60°C (Aquisição de dados)	60 seg*

O tempo de extensão é dependente da aquisição dos dados e deverá ser ajustado para cada instrumento de qPCR. A etapa apropriada para a aquisição de dados fluorescentes varia para diferentes formatos de ensaios com sonda. A aquisição de dados de ensaios com sondas de 5'-nuclease (TaqMan) deve ser realizado no final da etapa de extensão.

Alguns pares de *primers* podem exigir um protocolo de ciclagem de 3 etapas para um desempenho ideal. A temperatura de *melting* e da concentração dos *primers* podem precisar ser definidos empiricamente para pares de *primers* específicos e o instrumento termociclador.

Protocolo step cycling

Etapa	Passo	Temperatura	Tempo
Hold	Desnaturação Inicial	95°C	2 min
40 ciclos	Desnaturação	95°C	15 seg
	Anelamento	50°C - 60°C	15 seg
	Extensão	72°C (Aquisição dos dados)	45 seg

4. Ensaio de Otimização

O desenho dos *primers* e das sondas altamente específicos é um parâmetro crítico para a qPCR bemsucedida. O uso de programas para desenho dos *primers* é recomendada, a fim de minimizar a formação de estruturas secundárias internas e auto - Anelamento na extremidade 3' dentro de cada *primer*, o par de *primers*, e as combinações *primer*/sonda.

Para melhores resultados, o tamanho do *amplicom* deve ser limitada a 65-200 pb. Os resultados ótimos podem requerer titulação da concentração de iniciador de entre 200 e 800 nM. A concentração final de 400 nM de cada *primer* e sonda de 200 nM é ideal para a maioria das aplicações.

O aumento da concentração do *primer* que inicia a síntese da cadeia alvo que é complementar à sonda pode melhorar o sinal de fluorescência para alguns conjuntos de *primer*/sonda.

5. Ensaio de Controle de Qualidade

Este kit é funcionalmente testado em ensaios de qPCR utilizando o equipamento *Applied Biosystems 7500 Real-Time PCR System* seguindo os procedimentos descritos neste manual (protocolo de ciclagem 2-etapas = 2 *cycling*) para a detecção do gene de RNase P a partir de 20 ng de DNA genômico humano como *template*.

RnaseP Forward Primer
5' AGA TTT GGA CCT GCG AGC G 3'
RnaseP Reverse Primer
5' GAG CGG CTG TCT CCA CAA GT 3'
RnaseP Probe
5'FAM TTCTGACCTGAAGGCTCTGCGCG BHQ1 3'

O gene de RNase P humana é um gene de cópia única que codifica a fração de RNa para a enzima RNase P.

A análise de ensaio de qPCR em tempo real deve demonstrar a detecção do gene de RNase P humano com um CT (limiar de ciclo) <30.

6. Armazenamento

Armazenar em -20°C.

7. Garantia da Qualidade

A **NOVA BIOTECNOLOGIA** fornece garantia do produto **PROBE qPCR Master Mix** por ela fornecida contra defeitos de produção pelo período de validade do produto, salvo especificações em contrário a constar da proposta.

• A garantia abrange defeitos de produção.

Exceções na garantia:

- Todos os produtos com defeitos oriundos de mau uso, imperícia, conservação ou armazenagem inadequada.
- Quando não for utilizado de acordo com sua finalidade de aplicação.

8. Informações do Fabricante

NOVA BIOTECNOLOGIA LTDA

R. PASADENA, 235 - PARQUE INDUSTRIAL SAN JOSE

CEP: 06.715-864 - COTIA/SP - BRASIL

CNPJ: 24.096.423/0001-15

RESPONSÁVEL TÉCNICO

Dra. ELIZABETH CORTEZ HERRERA- CRBM 20.951/1

9. Atendimento ao Consumidor

Tel. +55 (11) 4243-2356

www.novabiotecnologia.com.br

e-mail: assessoria@novabiotecnologia.com.br